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Società Italiana di Fisica
Springer-Verlag 2001

The multi-configuration Dirac-Fock calculation
of the low-lying levels of Sm

A. Dilip1,a, I. Endo1, A. Fukumi2, M. Iinuma1, T. Kondo2, and T. Takahashi1

1 Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
2 Department of Physics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

Received 10 October 2000 and Received in final form 23 January 2001

Abstract. The excitation energies and hyper-fine structure constants of the low-lying levels of Sm atom are
calculated using the multi-configuration Dirac-Fock (MCDF) method. The results show that the excitation
energies of the ground state multiplets can be calculated accurately using a small orbital set but the higher
levels need larger orbital sets. Similar inference can also be drawn from the discrepancy between the
calculated values of the hyper-fine constants and the experimental data. A sequence of MCDF calculation
demonstrates the effect of the MCDF potential on the orbitals. Among the rare earth atoms Sm is a
promising candidate for discrete symmetry violation experiments in atoms. This makes accurate theoretical
calculations necessary since parameters in particle physics can be derived by combining the experimental
results with the theoretical results. And these could be a probe for the physics beyond the standard model.

PACS. 31.15.Ar Ab initio calculations – 31.25.Jf Electron correlation calculations for atom and ions:
excited states – 32.10.Fn Fine and hyperfine structure

1 Introduction

The most accurate experimental results of atomic parity
non-conservation (PNC) were obtained using cesium (Cs)
[1]. A recent theoretical analysis has shown that the devi-
ation of the 133Cs weak charge from the standard model
is 1.0σ [2] after the inclusion of the Breit and neutron nu-
clear distribution corrections. But another recent work [3]
concludes that the correction from the Breit interaction is
half of the previous work [2]. The theoretical uncertainty
is placed at 0.4% after the recent experimental results [4].
However, the theoretical calculations claim an accuracy of
1% [5,6]. To understand the PNC effects in atoms, it is
important to confirm the Cs results using atoms of other
elements and if possible improve the accuracy. A good
choice is one which has an advantage over Cs.

A preliminary selection criterion is the Z3 effect [7] in
the atomic PNC induced E1 amplitude E1PNC, where
Z is the nuclear charge. This makes an atom with Z
higher than Cs preferable. Among the high Z atoms, the
rare earth atoms are good candidates as they have closely
spaced opposite parity states. This further enhances the
E1PNC due to the inverse dependence on the energy spac-
ing between the PNC mixed opposite parity states. An
approach to improving the accuracy is reducing the un-
certainty from atomic many-body theory, which is a ma-
jor source of error. There are two possible ways to achieve
this: first, choose an atom with simple atomic structure
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and second, eliminate the uncertainty from the atomic
theory using the experimental results from isotope chains
[8]. The rare earth atoms satisfies the second condition
as many of them have several stable isotopes. Among the
rare earth atoms Sm is a promising candidate for studying
PNC as well as time-reversal violations. It has been stud-
ied before [9] and is also the choice of ongoing experimen-
tal studies. The levels of interest in Sm are 15 639.80 cm−1

and 15 650.55 cm−1, these are under experimental inves-
tigations for PNC experiments in our group [10,11]. The
same levels have been proposed for EDM measurement at
Berkeley [12].

An experiment with the isotope chain of Sm can re-
move the need of the atomic theory calculations, however
it is desirable to have an estimate of the expectedE1PNC.
In addition, the two levels do not mix directly through
the PNC interaction Hamiltonian and there is the possi-
bility of cancellations due to opposite mixing signs. A the-
oretical estimate can provide an understanding to these.
An accurate calculation of the E1PNC requires atomic
wave-functions which are accurate at all radial ranges. It
is therefore important to check the accuracy of the wave-
function by comparing the theoretically calculated atomic
properties with the experimental data. The structure cal-
culation of the rare earth atoms is very difficult due to
the strong configuration mixing arising from the electrons
in the 4f shell. Among the lanthanide atoms, the struc-
ture calculation of Sm is one of the most complicated as
it lies within the mid range of the series. The structure
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calculation for the levels of interest is even more com-
plicated as these are high-lying levels. As a preliminary
step we have calculated the properties of the low-lying
levels and we are in the process of improving the proper-
ties of the high-lying levels. In this paper we report the
results of our recent calculations. The properties of the
low-lying levels were also studied in earlier works of Cheng
and Childs [13] and Porsev [14]. All our calculations are
done with a parallel C-version of GRASP92 [15] and all
quantities are in a.u. unless specifically mentioned.

2 Method of atomic structure calculation

2.1 Calculating orbitals with multi-configuration
Dirac-Fock potential

The starting point of an atomic structure calculation is
obtaining a set of orbitals. Using these orbitals a hierar-
chy of wave-functions can be computed to represent the
atomic state. An orbital ψ(r) is represented in the rela-
tivistic notations as

ψnκ(r) =
1
r

(
Pnκ(r)χκm(θ, φ)

iQnκ(r)χ−κm(θ, φ)

)
(1)

where n is the principal quantum number, κ is an angular
quantum number, m is the magnetic quantum number,
Pnκ(r) and Qnκ(r) are large and small component radial
functions respectively, and χκm(θ, φ) and χ−κm(θ, φ) are
the spinor spherical harmonics in the lsj coupling scheme.
A set of Slater determinants can be constructed from the
orbitals and linear combinations of these determinants can
build up a set of orthonormal configuration state functions
(CSFs). The calculations are carried out in terms of CSFs
and Slater determinants are not used explicitly. A CSF is
represented by |γPJM〉, where P , J and M are the parity,
total angular momentum and magnetic quantum numbers
respectively, and γ is an additional quantum number to
define each CSF uniquely. The CSFs satisfies the condition
of orthonormality. Then, an atomic state function (ASF)
which represents a stationary state of an atom is a linear
combination of these CSFs

|ΓPJM〉 =
nc∑
r

crΓ |γrPJM〉 (2)

where Γ is a quantum number to define each ASFs
uniquely, crΓ are the mixing coefficients of the CSFs and
nc is the number of CSFs. Similar to the CSFs, the ASFs
should also satisfy the condition of orthonormality

(c)†ΓicΓj = δij . (3)

The orbitals can be generated using an appropriate Hamil-
tonian. The Dirac-Coulomb Hamiltonian HDC is the one

chosen for our calculations. For an N electron atom

HDC =
N∑
i=1

[
cαi · pi + c2(βi − 1)

− Z(ri)
ri

+
N∑

j=i+1

1
|ri − rj |

]
(4)

where αi and βi are the Dirac matrices, pi is the momen-
tum of the electron, Z(ri) is the effective nuclear-charge
at r and the last term is the electron-electron coulomb in-
teraction. It is important to choose an approximate form
of the electron-electron coulomb interaction potential to
reduce the problem to the independent particle level. The
Dirac-Fock (DF) potential is a good choice for atoms with
a few valence electrons but not for an atom like Sm, which
has open 4f shell. It is more accurate to use a multi-
configuration potential, so that the orbitals are generated
with the potential that has important valence-valence cor-
relation effects. This is important since perturbation tech-
niques can break down when there are strong correlation
effects. The energy of the ASF Γ is

EDC
Γ = 〈ΓPJM |HDC|ΓPJM〉 = (cDC

Γ )†HcDC
Γ . (5)

Requiring that EDC
Γ be stationary with respect to varia-

tions in the mixing co-efficient subject to the condition (3)
yields the eigen-value equation

(HDC −EDC
Γ 1)cDC

Γ = 0 (6)

where 1 is the nc×nc unit matrix. The mixing coefficients
are the solutions of this equation.

The orbitals can be calculated self-consistently using
the principle of variation [16] on the energy functional
defined with respect to a set of ASFs

WDC =
nc∑
r,s

drsH
DC
rs +

nw∑
a=1

nc∑
r=1

drrq(a)εa

+
nw−1∑
a=1

nw∑
b=a+1

δabεabN(ab) (7)

where drs and drr are the weight factors, HDC
rs are the

matrix element of HDC between the CSFs |γrPJM〉 and
|γsPJM〉, q(a) is the occupation number of the ath sub-
shell and nw is the number of the orbitals. The quantity
N(ab) is the overlap integral between the ath and bth
orbitals and εa and εab are the Lagrange multipliers to en-
force the orthonormality between the orbitals of the same
symmetry. The condition of the variational procedure is
that WDC be stationary with respect to the variations of
the radial components of the orbitals. The weight factors
can be chosen in a number of ways, in our case these are
chosen as

drs =
1
nL

nL∑
i

crΓic
s
Γi (8)
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where nL is the number of ASFs chosen for the MCDF
calculation. This choice of weight factors is a version
of the extended optimized level (EOL) calculation. The
positronic states are also the solutions of the single par-
ticle equation obtained but only the bound orbital solu-
tions can be selected by putting the boundary condition
ψ(r) → 0 at r → ∞ [17]. This is an important condition
as the variational procedure can break down in presence
of the positronic solutions. The positronic solutions con-
tribute significantly to the properties of ions where the
nuclear potential is strong but are less important for prop-
erties of atomic bound states. The MCDF calculations
are done with the CSFs that contribute strongly to the
required ASFs. The effective nuclear charge Z(r) is calcu-
lated using the Fermi-nucleus model

ρ(r) =
ρ0

1 + exp[(r − c)/a]
, a = t4 ln 3, (9)

where ρ(r) is the radial charge density, ρ0 is a constant,
c is the half density radius and t is the skin thickness
parameter. It is important to use a finite nuclear model as
nuclear charge of Sm is high. The parameters c and a in
our calculations are 1.1189× 10−4a0 and 9.8906× 10−6a0

respectively.

2.2 The correlation effects

The leading configuration of the ground state multi-
plet and eleven other even parity excited multiplets till
12 176 cm−1 are 4f66s2 and 4f65d6s respectively. And
4f66s6p is the leading configuration of the odd parity lev-
els below 18 000 cm−1. Due to the 4f open-shell, each of
these configurations produces many CSFs with the same J
but with different intermediate angular momentum. And
these can have strong correlation mixing. A significant
portion of the valence-valence correlation, which has the
largest contribution among the different types of correla-
tion effects can be captured by including all the CSFs of
the leading configurations in the MCDF calculation.

To choose the configurations in the MCDF calcula-
tions, it is important to make correct identification of the
core and valence orbitals. For the rare earth lanthanide
atoms, the orbitals upto 4f can be treated as the core.
This is evident from the studies of Cheng and Childs on
the lanthanide atoms [13], which demonstrated the stabil-
ity of the 4f shell. The orbitals 5d, 6s and 6p can be chosen
as the minimal set of valence orbitals. The CSFs gener-
ated with these valence orbitals should be included in the
MCDF calculation since 4f66p2 and 4f65d6p mix signifi-
cantly with 4f66s2 and 4f66s6p respectively. The config-
uration 4f65d2 does not mix with 4f66s2 and 4f65d6s as
strongly as 4f66p2 does with 4f66s2. But it can mix with
both 4f66s2 and 4f65d6s and the large number of CSFs
generated by it can make the overall contribution from
this configuration large. Thus the orbitals (1–5)s, (2–5)p,
(3–4)d and 4f are core, and 5d, 6s and 6p are valence.
The others are virtual orbitals. The virtual orbitals are
required to capture the correlation effects left out with
only the core and valence orbitals as the orbital basis.

Apart from the valence-valence correlation effects,
there are other types of correlation effects involving the
core, valence and virtual shells. The important ones are
the core-valence and valence-virtual. Contribution from
all the types of correlation effects can be included in the
calculation using the method of configuration interaction
(CI). It is a straight forward diagonalization of the HDC

matrix with the CSFs generated from the core, valence
and virtual orbitals. The matrix diagonalization need effi-
cient algorithms since each of the configurations generates
a large number of CSFs. A preferred choice is the Davidson
algorithm [18].

2.3 Generation of the virtual orbitals

The initial MCDF calculation with the important config-
urations generates the core and valence orbitals. However,
to include important correlation effects in CI calculations,
the virtual orbitals are also required. Ideally, all the cor-
relation effects can be captured with an active CSF space
generated from a complete set of orbitals. But for a com-
plex atom like Sm, computationally, this is beyond the
existing expertise. The virtual orbitals satisfies the condi-
tions of orthonormality and completeness, the method of
generation is less important compared to these conditions.

A possible method to generate a set of virtual orbitals
is to increase the CSF space in the MCDF calculation by
adding selected CSFs that has virtual orbitals [19], while
the orbitals generated in the previous calculations are kept
frozen. The virtual orbitals can then be generated in lay-
ers. One layer is a set of s, p, d, f and g orbitals with the
same principle quantum number. In our Sm structure cal-
culation the first layer is 7s, 7p, 7d, 7f and 7g. The CSFs
added to generate each layer of virtual orbitals are the sin-
gle excitation from the valence orbitals. All the levels of
Sm below 25 000 cm−1 has 6s orbital and many have the
same configurations. As observed in earlier studies [19],
the valence orbitals are term dependent. To get good re-
sults the correlation within the valence space is saturated
with the 7s, 7p, 7d and 7f , hence the layer with the princi-
pal quantum number 8 is the first layer of virtual orbitals
generated by freezing the core orbitals.

2.4 Configuration interaction combined
with perturbation theory

The large number of intermediate angular momentum af-
ter coupling the 4f shell makes the CSF space exceedingly
large with a few virtual orbitals. It is very difficult to do a
CI calculation when the core excitations from 4f are also
included, where the CSF space could reach a million even
with a single layer of virtual orbitals. It is preferable to
treat the less important CSFs perturbatively [20]. To im-
plement this, separate the CSF space into two groups: a
zeroth order group, which accounts for a large portion of
the correlation effects, and a first order group, which ac-
counts for the remaining correlation effects. Consider the
Hamiltonian matrix that has submatrices: H00 consisting
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of elements between the zeroth order CSFs, H01 consisting
of the elements between the zeroth and first order CSFs
and its transpose H10, and diag(H11) consisting of all the
diagonal elements within the first order CSFs. The rest
of the elements are set to zero. The Hamiltonian matrix
appear as (

H00 H01

H10 diag(H11)

)
. (10)

A CI calculation with such a Hamiltonian matrix includes
all the important correlations effects from the zeroth or-
der group but selectively from the first order group. The
method is a part of the CI module in GRASP92 [15]. For
some of the configurations, the individual contributions
from each CSF is negligible but the net contribution from
all the CSFs generated by the configuration can be signifi-
cant. And since the level spacings are not very large, these
contributions are important to get proper level sequence.
The method described is useful in including such config-
urations in the CI calculation. At this stage the method
used is a combination of MCDF, CI and many-body per-
turbation theory.

3 The calculation of the hyperfine constants

The magnetic dipole and electric quadrupole hyperfine
constants A and B of an atomic state arises due to the in-
teraction between the electromagnetic multipole moments
of the nucleus and the electrons. These quantities indicate
the strength of the interaction. An atomic state with the
total angular momentum J has

AJ =
µI
I

1
[J(J + 1)]1/2

〈ΓJPJ ||T(1)||ΓJPJ〉 (11)

and

BJ = 2QI

[
J(2J − 1)

(J + 1)(2J + 3)

]1/2

〈ΓJPJ ||T(2)||ΓJPJ〉

(12)

where µI is the nuclear magnetic dipole moment, I is the
nuclear spin, QI is the nuclear quadrupole moment, and
T(1) and T(2) are electronic tensor operators of rank 1 and
2 respectively. For an atom with N electrons

T(1) =
N∑
i=1

−iα
[
αi · 1C

(1)
i

]
r−2 (13)

and

T(2) =
N∑
i=1

−C(2)r−3, (14)

where α is the fine-structure constant, and C(1) and C(2)

are spherical tensor operators in the electronic space. The

Table 1. The lowest multiplet of Sm in units of cm−1.

Level Expt Cheng and Childs Porsev Present work

7F1 292.58 237 285 278
7F2 811.92 694 811 793
7F3 1489.55 1328 1524 1491
7F4 2273.09 2100 2377 2325
7F5 3125.46 2970 3332 3257
7F6 4020.66 3885 4361 4260

reduced matrix elements in equations (11, 12) are calcu-
lated by expressing in terms of CSFs

〈ΓJPJ ||T (K)||ΓJPJ〉 =
∑
r,s

crΓJ c
s
ΓJ 〈γrPJ ||T

(K)||γsPJ〉.

(15)

Further it can be converted to the reduced matrix ele-
ments between the orbitals using

〈γrPJ ||T (K)||γsPJ〉 =
∑
a,b

dKrs(ab)〈ψa||tK ||ψb〉, (16)

where dKrs(ab) are the angular factors to convert the re-
duced matrix element between jj-coupled CSFs to or-
bitals. Then, AJ and BJ depend on the angular factors
dKrs(ab), the CSF co-efficients crΓJ and csΓJ and the reduced
matrix elements between the orbitals. However, the largest
contribution is from the orbital reduced matrix elements.
The radial dependence of A and B are r−2 and r−3 re-
spectively. Due to the negative exponents, A and B has
main contributions from the small r region where it is a
large multiplying factor but a suppression factor in the
large r region. The accuracy of the hyperfine constants
can be considered as the measure of the accuracy of the
wave-function in the small r region.

4 Results of the calculation

4.1 The MCDF and CI calculations

The ground state configuration 4f66s2 generates 295 rel-
ativistic CSFs with the total angular momentum J in the
range 0 to 12. The ten lowest levels are calculated using
the MCDF method. The excitation energies of the ground
state multiplet are given in Table 1. The results of earlier
calculations [13,14] and the experimental data [21] are also
given for comparison. Cheng and Childs calculated the
ground state multiplet excitation energies and hyper-fine
structures with the MCDF method using Desclaux’s code
[22]. However, the energy functional is different from the
present case. In Desclaux’s code the energy of the ASF is
the sum of the average CSF energy and the off-diagonal
double excitation coulomb matrix elements. This is fur-
ther corrected with the Breit interaction as perturbation.
Porsev calculated the excitation energies and transition
properties of the levels in the low-lying multiplets 7FJ ,
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Table 2. Excitation energy of the low-lying levels of Sm in
cm−1.

Level Expt Porsev Present work

MCDF CI1 CI2

7F1 292.58 285 276 296 297
7F2 811.92 810 790 — —
9G0 13796.36 11339 11147 11444 11533
9G1 13999.50 11533 11337 11637 11726
9G2 14380.50 11906 11704 — —
9H1 10801.10 12739 13227 12153 11842
9H2 11044.90 12693 13444 — —

9HJ , 9DJ , 9GJ and 9FJ . He used CI method with an or-
bital set in which the core and valence are generated by a
Hartree-Fock-Dirac Code and the virtuals are generated as
a function of these [23]. The following observations can be
made after comparing the theoretical results of the ground
state multiplet energies.

1. Cheng and Child’s results are below the experimental
values. The deviations range from 55.58 cm−1 in 7F1

to 173.09 cm−1 in 7F4.
2. The 7F1 and 7F2 excitation energies in Porsev’s results

are in very good agreement with the experimental val-
ues. The remaining levels are slightly higher than the
experimental values.

3. Our results also exhibit the same pattern as Porsev’s
results. However, the higher levels are closer to the
experimental data compared to his results.

The size of the CSF space in the MCDF calcula-
tion is increased in steps by increasing the number of
orbitals and by including odd parity CSFs. None of
the orbitals are frozen till the orbital set reaches (1–
7)s, (2–7)p, (3–7)d and 4f . The orbitals (1–6)s, (2–6)p,
(3–6)d and 4f are spectroscopic type, and 7s, 7p and
7d are correlation type. The spectroscopic orbitals have
(n− l− 1) nodes, where n and l are the principle and or-
bital quantum numbers respectively. But the correlation
orbitals can have any number of nodes. Generating the
orbitals in steps without freezing prevents large modifica-
tions to the orbitals and avoid convergence failure, which
can occur if there are large modifications to the orbitals.
At each step the orbitals generated in the previous step are
considered as the initial guess. To generate new orbitals
Thomas-Fermi and Coulomb orbitals are chosen as the
initial guess for spectroscopic and correlation orbitals re-
spectively. The CSF space has all the possible excitations
among the valence shells and to the saturation orbitals 7s,
7p and 7d but no excitations from the core. The results
of the MCDF calculation are given in the Table 2. To re-
duce the size of the CSF space, only those with J = 0, 1, 2
are selected and the total number of CSFs is 39 313. This
is a relatively large CSF space for an MCDF calculation,
yet the excitation energies have not improved compared
to Porsevs’s results. It is to be noted that in both the
theoretical results, the sequence of excitation energies is
different from the experimental data.

Table 3. The groundstate energy E0 and excitation energy of
the 4f65d6s(9H1) level E(9H1) in cm−1 and nc is the number
of CSFs; and ∆E(9H1) = ∆EExpt(

9H1)−∆ETheor(
9H1).

CSFs nc E0 E(9H1) ∆E(9H1)

6s2 + 5d6s+ 5d2 5540 −1009 8087 2714.1

+6p2 6974 −4988 12155 −1353.9

+6s6d+ 6d2 12407 −4778 11908 −1106.9

6s2 + 5d6s+ 5d2

+6p2 + 6s6p+ 5d6p 13275 −4816 12846 −2044.9

+6p6d+ 6s6d+ 6d2

+5d6d 31717 −4880 12593 −1791.9

The effects of electron-correlation at each step of the
calculation can be studied by comparing selected proper-
ties. The ground state energy E0 and 4f65d6s(9H1) level
from each intermediate steps of the calculation are given
in the Table 3. In this table the value of the E0 is shifted
by an amount of −2 289 007 890 cm−1, which is the value
of E0 in the MCDF calculation with the single configu-
ration 4f66s2. The quantity ∆E(9H1) is the deviation of
the calculated energy from the experimental value, that
is ∆E(9H1) = ∆EExpt(9H1) − ∆ETheor(9H1). From the
Table 3 we can make the following observations.

1. Comparing the first and second rows in the table shows
that the configuration 4f66p2 decreases the E0 by
3 979 cm−1 while E(9H1) is increased by 89 cm−1.
The shift in E0 is the result of strong mixing between
4f66s2 and 4f66p2. And the increased value of E(9H1)
indicates that the configuration 4f66p2 modifies the 5d
and 6s orbitals differently. The changes in the orbital
energies confirms this, while the 6s energy changes by
−0.0105 a.u. the 5d energy change is −0.0041 a.u. The
change in 5d energy is taken as the mean of the values
corresponding to 5d3/2 and 5d5/2 orbitals. A possible
cause could be that the configuration 4f66p2 produces
larger modifications to the MCDF potential of 6s com-
pared to that of 5d.

2. The effect of the MCDF potential to the orbitals can be
made obvious if the previous trend could be reversed
by selective addition of configurations. This is demon-
strated by the results in the third row. The configura-
tion added are 4f66s6d and 4f66d2, the first configu-
ration mixes strongly with the leading configuration in
9H1, 4f65d6s. The 6d orbital is a correlation orbital.
The MCDF calculation result shows thatE0 is elevated
by 210 cm−1 while E(9H1) is lowered by 48 cm−1. In
this calculation, the changes in the energies of 6s and
5d orbitals are 0.0061 a.u. and 0.0065 a.u. respectively.
Since the 6d orbital is of a different kind it is not en-
tirely accurate to compare the orbital energy change
with the previous calculation.

3. From the third row onwards the calculations include
odd parity configurations. The results shows that E0

and E(9H1) exhibit similar trend observed in the previ-
ous calculations while adding 6p and 6d. But both the
level energies are larger compared to the calculations
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Table 4. The energy and the hyperfine constants A and B for
7F1 state of 147Sm in units of cm−1 and MHz respectively.

CSFs nc A (MHz) B (MHz)

6s2 + 5d6s+ 5d2 5540 −16.88 −36.34

+6p2 6974 −16.81 −35.91

+6s6d+ 6d2 12407 −16.84 −35.84

6s2 + 5d6s+ 5d2

+6p2 + 6s6p + 5d6p 13275 −16.87 −35.99

+6p6d +6s6d+ 6d2

+5d6d 31717 −16.89 −35.98

Prev [13] −33.77 −58.88

Expt −33.493 [24] −58.688 [24]

without the odd parity configurations. This could be
due to the modification of the core orbitals.

The results of a CI calculation using the orbitals gen-
erated so far are given in column CI1 in Table 2. The CSF
space consists of all the possible single and double excita-
tions from the configurations 4f66s2 and 4f6s6p. In total
there are 106 234 CSFs in this calculation. To reduce the
size of the CSF space only the J = 0, 1 have been consid-
ered in this calculation. The result indicates an improve-
ment in the excited levels compared to the MCDF results:
the 9G0 and 9G1 increases while 9H1 decreases. An impor-
tant configuration which is missing from this calculation
is the 4f55d26p, it contributes to the correlation effects of
the levels with the leading configuration 4f65d6s like 9H1.
The CI results after including the CSFs corresponding to
the configurations 4f55d26p and 4f5d27p are given in the
column CI2, the number of the CSFs is 114 572 and the
excited levels are improved further.

The CI calculations are done using the full Hamilto-
nian matrix. A test calculation is done to check the CI
method combined with the perturbation. The CSFs in the
zeroth order group are selected using the mixing coeffi-
cients. We find that the same results can be reproduced
by treating the CSFs with mixing coefficients less than or
equal to 0.0001 perturbatively. Starting from the next vir-
tual orbital layer, the CI calculations are done using this
method and these are in progress.

4.2 The hyperfine constants calculations

The hyperfine structure (HFS) constants A and B are cal-
culated at all stages of the computation. And the values
for the 4f66s2(7F1) level corresponding to the sequence of
MCDF run in Table 3 are given in Table 4. The HFS con-
stants for other levels are also calculated but the deviation
from the experimental data are much larger than that of
4f66s2(7F1). Comparing the results in Tables 3 and 4 in-
dicates that the HFS constants of the 4f66s2(7F1) level is
very stable even though E0 undergoes large changes. This
is not surprising, since a large number of the CSFs arises
due to the addition of configurations with high angular
momentum orbitals 5d and 6d. The direct contributions

Table 5. The energy and the hyperfine constants A and B for
7F1 state in units of cm−1 and MHz respectively.

CSFs nc A (MHz) B (MHz)

6s2 2−→ 6p, (5, 6)d

+5s25p64f56s26p

+5s25p54f66s26p

+5s5p64f66s26d 43927 −16.71 −31.34

+4s24p65s25p64f66s26p

+4s14p65s5p64f66s26d 56481 −16.74 −30.94

to the HFS constants from these orbitals is negligible. But
these can contribute significantly through the orbital po-
larization, referred as the Sternheimer effect in case of B.
However, the configurations in this sequence of calculation
are chosen to gauge the nature of valence-valence corre-
lations and its effects. Thus, it is clear that the valence-
valence correlation effects has negligible effect on the HFS
constants. For a comparison, the results from the previous
theoretical calculation of Cheng and Childs [13] and the
experimental results are also given.

The core polarization effects can contribute to the HFS
constants through the spin polarization and orbital po-
larization, the later produces the Sternheimer effect. The
core polarization effects in a CI calculation can be intro-
duced by including the configurations with single excita-
tions from the core. The spin polarization contributions
from the core s and p1/2 excitations could be large for
HFS constant A due to the contact interactions. To study
these effects, the hyper-fine constants are calculated with
the CI wave-functions with the configuration space that
has single excitations from 4s, 4p, 5s and 5p to the va-
lence shells. The results are given in Table 5. It is observed
that the HFS constant A is not affected by the configura-
tions added but the HFS constant B changes noticeably.
This indicates that the configurations added contributes
to the Sternheimer effect and not to the core polariza-
tion effects that contributes to the HFS constant A. The
configurations added in these calculations capture the ef-
fect of the valence shell induced core polarization effects
and the orbital polarization in particular. The other type
of excitations that can contribute to the core polarization
effects are the configurations with core electrons excited to
the virtual shells. The extensive study of these effects are
currently under study. These calculations require longer
runtime as the number of CSFs are very large due to the
larger number of open shells. In general, the contribution
from the core polarization effects are larger than the cor-
relation effects.

The next calculation of the HFS constants is using
the MCDF wave-function generated with the saturated
configuration space. The results from this calculation are
given in Table 6. Both the HFS constant improves by al-
most equal amount. Since the saturation orbitals 7s, 7p,
7d and 7f contribute to the correlation effects, the change
in the HFS constants arises from two contributions: first,
the mixing coefficients and second, the presence of low
angular momentum orbitals 7s and 7p. It is to be noted
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Table 6. The hyperfine constants A and B for 7F1 state in
units of MHz.

CSFs nc A (MHz) B (MHz)

6s2 2−→ 7s, (6–7)p, (5, 7)d 39313 −23.12 −35.70

that the singly excited CSFs important for the core po-
larization effects have small mixing coefficients. It is also
observed that the HFS constants are stable with respect
to changes in the Fermi-nuclear model parameters c and a.

5 Conclusions

From the results of our calculation the following conclu-
sions can be drawn.

1. The sequence of the MCDF calculation shows that
the valence-valence correlation effects can influence the
properties of the orbitals generated. And the change is
sensitive to the configurations chosen. This is due to
the strong mixing between the CSFs arising from the
open 4f shell.

2. Though the core excitation are expected to contribute
to the HFS A and B, only the changes in B is signifi-
cant if the excited orbitals are of high orbital angular
momentum. This could due to the limited number of
configurations used in the calculation and the added
configurations are more important for the Sternheimer
effect.

3. The present calculation is one of the largest MCDF
calculation to date, yet the discrepancy of the HFS
constants from the experimental values is very large.
This could improve with more correlation effects in-
cluded in the calculation. It is also possible that the
combination of orbitals and configurations chosen for
the MCDF calculations are not the best possible com-
bination.

All the numerical calculations presented in our paper were done
using the computing facilities of Institute of Numerical Simu-
lations and Mathematics, Hiroshima University, specially the
Paradragon Cluster. One of the authors, Angom Dilip would
like to thank the Japan Society for Promotion of Science for
the Post-Doctoral Fellowship.

References

1. C.S. Wood, S.C. Bennet, D. Cho, B.P. Masterson, J.L.
Roberts, C.E. Tanner, C.E. Weiman, Science 275, 1759
(1997).

2. A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000).
3. M.G. Kozlov, S.G. Porsev, I.I. Tupitsyn, asXiv:

physics/0101053.
4. S.C. Bennet, C.E. Wieman, Phys. Rev. Lett. 82, 2484

(1999).
5. V.A. Dzuba, V.V. Flambaum, O.P. Sushkov, Phys. Lett.

A 141, 147 (1989).
6. S.A. Blundell, W.R. Johnson, J. Sapirstein, Phys. Rev.

Lett. 65, 147 (1989); S.A. Blundell, W.R. Johnson, J.
Sapirstein, Phys. Rev. D 45, 1602 (1992).

7. M.-A. Bouchiat, C. Bouchiat, Phys. Lett. B 48, 111 (1974).
8. V.A. Dzuba, V.V. Flambaum, I.B. Khriplovich, Z. Phys.

D 1, 243 (1986).
9. D.M. Lucas, R.B. Warrington, D.N. Stacy, C.D.

Thompson, Phys. Rev. A 58, 3457 (1998).
10. A. Fukumi, I. Endo, T. Horiguchi, Y. Ishida, T. Kondo, T.

Kuwamoto, H. Matsuzaki, T. Nakamura, T. Takahashi, Z.
Phys. D 42, 243 (1997).

11. A. Fukumi, I. Endo, T. Horiguchi, M. Iinuma, T. Kondo,
H. Matsuzaki, T. Takahashi, http://photon.hepl.

hiroshima-u.ac.jp/members/fukumi/ICAP16

12. S. Rochester, C.J. Brown, D. Budker, D. DeMille, M.
Zolotorev, Phys. Rev. A 59, 3840 (1999).

13. K.T. Cheng, W.J. Childs, Phys. Rev. A 31, 2775 (1985).
14. S. G. Porsev, Phys. Rev. A 56, 3535 (1997).
15. F.A. Parpia, C. Froese Fischer, I.P. Grant, Comp. Phys.

Comm. 94, 249 (1996).
16. K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P.

Plummer, Comp. Phys. Commun. 55, 425 (1989).
17. I.P. Grant, H.M. Quiney, Adv. At. Mol. Phys. (Academic

Publishers), Vol. 23.
18. E.R. Davidson, J. Comput. Phys. 17, 87 (1975); Comput.

Phys. Commun. 53, 49 (1989).
19. J. Bieron, F.A. Parpia, C. Froese Fischer, Phys. Rev. A

51, 4603 (1995).
20. C. Froese Fischer, J. Phys. B 26, 855 (1993).
21. C. Martin, R. Zalubas, L. Hagen, Atomic Energy Levels–

The Rare Earth Elements, Natl. Bur. Stand. U.S. Ref. Data
Ser. No. NSRDS-NBS 60 (U.S. GPO, Washington, DC,
1978).

22. J.P. Desclaux, Comp. Phys. Commun. 9, 31 (1974).
23. M.G. Kozlov, S.G. Porsev, V.V. Flambaum, J. Phys. B 29,

689 (1996).
24. W.J. Childs, L.S. Goodman, Phys. Rev. A 6, 2011 (1972).


